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Periodic and Non-Periodic Components in
Geomagnetic Secular Variation

Kazuo YANAGIHARA

Abstract

Periodic component of geomagnetic secular variation is found when the non-
periodic change is reduced from observed values. Its period and amplitude are
often determined wrongly by careless estimate of the non-periodic component, such
as simple approximation by a power function of time. The method of least
squares should be applied to a sum of non-periodic and periodic terms. This is
discussed in this paper. And then the analysis is made for 10 observatories’ mean
secular variation. Its period is about 60 years with the amplitude of 15—16 y/yr

in H or D.

1. Intreduction

Instrumental routine observation of geomagnetic field has been carried out for
several ten years at many stations over the world. Geomagnetic secular variation is
generally slow and non-periodic for a short time, but a few research workers have
noted a periodic variation of several ten years period superposed upon the general
tendency of slow change!"®, Dynamo-theoretical consideration also shows a possibility
of oscillation of the earth’s quadrupole whose period is 77 years‘®.

Non-periodic component of the observed secular variation might be a part of a
periodic variation with a much longer period which cannot be identified from such a
short duration of the observation. However it is convenient to divide the variation
into periodic and non-periodic components with respect to the duratlon of observa-
tion. Non-periodic variation is expressed by a linear sum of rt, }3 But, where ¢ is
time (expressed in unit of year in this paper) and N is generally not more than 2.
For periodic component only periods more than a few ten years are considered in this
paper. Variations with a shorter period, such as 1l1-year, may exist, but they are
regarded as noises in the present study. In order to study such rapid variations,
general trend of slow variation must be reduced. Hence one of the main purpose
of this paper is to get accurate secular variation which includes both of periodic and
non-periodic terms. After the accurate secular variation is reduced from observed
values of geomagnetic field, significant rapid changes may be found in the residual.
This last point will be discussed in another paper. Another purpose is to get oscil-
lative mode of main geomagnetic field.
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Secular variation is approximately expressed by Z But for a short time. When
extending this approximation to the whole penod To of observation, such as several
ten years, it is rather difficult to directly obtain the correct values of the coefficients
Bs’s which express the real non-periodic term, because of superposition of periodic
variation with period 7 near to To,. First step to get the non-periodic term may be

N
to calculate the best fit curve of 3 But for observed values during the period T,

without regarding the periodic term. Thus obtained curve is clearly different from the
real non-periodic component. This results in a different periodic term. Its period is
significantly different from the real period 7. It is approximately 3/4 of the observa-
tion périod To, not depending upon the real period T (section 2).

It might be essentially difficult to identify a periodic term with a period which is
near to the duration of observation. Nevertheless it is necessary to search for a better
way to get more correct periodic term for the said study.

2. Apparent period
Apparent period which is usually seen in the secular variation is discussed first.
Function y(r) of time 7 is a sum of non-periodic and periodic terms expressed by,

Y(t) = Bo + Pit + Pat® + asin(2zt/T) + b cos(2rt/T) . (1)

Values of () have been observed during —7To/2 < t £ To/2. The period T of the
periodic term is near to the observation period 7o. The function y(f) may be annual
mean value of geomagnetic field (y) or its rate of change (y/yr), or some other
quantities.

Supposing,

Y1) = [Bo] + [Bi]s + [Ba]r® (2)

for first approximation of y(r), best fit coefficients [B:]’s are calculated by the least
square method as follows.

2y = N[Bo] + L[t + L [B:]?
2yt =L [Bolt + L[Pile2 + L [Be) (3)
2yt =Z[Be? + TBE + L [Bart.

N is the total number of observatioﬁ. If the observation is evenly distributed
throughout the duration 7o with sufficiently large N, summation }; in the right-hand
side of the equation (3) can be replaced by integral and the terms of ¢ and r* disap-
pear. Considering that errors and noises in observed values of y(r) are averaged and
disappear in }Jy, >yt and } yr% these summations are replaced by integral. Putting
(1) into (3), the differences between the real and estimated coefficients,
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are expressed by functions of p, which is

p=T/Te. (5)
Residual part of y(r),

Ayn(r) = y() — yu(0) (6)

still includes non-periodic term with the coefficients given by the equation (4). It gives
an apparent periodic variation with an apparent period much different from the real
period T for —To/2 £t X To/2. Examples are shown in Fig. 1, whose upper part
shows two cases of ¥(f) with

(@) Po=P=b=0, pr=-533/To, a=1, T=3/2)T,
(b) Bo=ﬁ2=b=0, 131=—3.60/To, a=1, T=T,.

Three straight lines of each y(r) express the real non-periodic term B¢, the first
approximation [51]¢ and their average ([$1] + B1)7/2, respectively. Lower three curves
in each column are residuals after subtracting the indicated non-periodic variation from
y(). Both 4yi(t) shown in the top of them gives an apparent period very near to
(3/4)T., without distinction of the real period T, which is (3/2)Te or T,. The lowest
curve expresses the real periodic term, and the middle shows again an apparent period
moderately different from the real one.

Residual curves, such as those shown in Fig. 1, include non-periodic term so that
they are quasi-periodic in the given internal 7o. Determination of their period is
generally difficult, particularly in the actual case which includes noises in the observed
value of y(r). Here apparent period T, is defined as it is the interval between the
points where the residual is zero (Fig. 1). 7. depends upon the determined coefficients
of non-periodic term in ¥(r). For ¥(f) = it + asin(2nt/T,), change of T, in the
residual function 4y,'(f) = — 4Bt + asin(2zt/T,) is shown in Fig. 2 with respect to
error 4B, in determination of Si. Abscissa of the figure shows 48; in unit of
(81 — [B1]). The origin of the abscissa represents 48, =0, hence T4 =T, and 48; =
—1.0(81 — [B1]) is the case of the said first approximation, 4¥i(f) = ¥(t) — y:(). For
4B; >0, the point of zero residual is not located within the interval —7o/2 < t < To/2,
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Fig. 1. Examples showing how the apparent period of
residual function differs from the real period T depend-
ing upon the non-periodic term subtracted from the
original variation y(7) which is the sum of non-periodic
term, B¢ and periodic one, sin(2wt/T).
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Fig. 2. Change of the apparent period T, which is due to the

error 4B in dermination of the coefficient 8, for
y(8)=Byt+a sin2wt/Ty).
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then 7. is not determined. But extending the theoretical function outside the interval,
Ta is calculated and shown for reference.

Broken line in the figure shows a more correct period which is obtained in a
reasonable way described in the next section. Tow lines nearly coincide with each
other in the region of 48< 0. T, obtained in the said simple way gives nearly cor-
rect value of the period of the residual quasi-periodic variation, which is not the
period T of the original variation y(r). It nearly sticks in (3/4)To for the given
examples of 4yi(f) whose original functions y(r) are anti-symmetric with respect
to +=0. Reason why only anti-symmetric terms are considered will be described in
the next section.

Ta of the anti-symmetric term of 4y,(r) is calculated from the interval between
two ¢ values which satisfy the equation,

L(PX(t/To) + sin(rt/pTe) =0,

and it changes shightly with p(=7/Ty) as it is shown in Fig. 3. Therefore the original

Ta/To
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Fig. 3. The appérent period Ts of anti-symmetric term of
dy((t), which varies with the period T in the original
function y(2).

period T may be determined from 7,. As T decreases, 7s approaches to 7. For
shorter T, period determination is easy. For longer T it is not so easy to distinguish
slight change of T, particulary for T > T7o. This difficulty is shown. in another
example of Fig. 4, whose three curves are very similar in the interval —T0/2 < ¢ < To/2.
Each curve represents anti-symmetric function y(f) = Bit + a sin(2xt/T) with different
period T, T =(3/2)To, To or (3/4)T, and with different confficients 81 and a which are
chosen so as to give quite similar curve in the interval —7,/2 <t < To/2. From
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Fig. 4. Very similar curves in the interval —To/2<¢5T0/2.
Each curve represents y(f)=pif+a sin(2aw¢/T), with

(1) p1=-1020/T,, a=3.89, T=(3/2)T,

(2) B1=-297/To a=155 T=T,

3) Bi=0, a=1, T=3/9HT,

observed values in this interval, it may be very difficult to distinguish the difference
between the curves, though their periods are different very much from each other.

Even though the inevitable uncertainty is included, 7—7, curve is a simple but
valuable way to estimate the real period 7, compared with misunderstanding that an
apparent period, such as 7T,, is supposed to be the real period.

3. Analysis of period

Usual method of spectral analysis is not applicable to the variation observed
within the limited interval To which is near to the period T concerned. In order to
get the period of 4y:(t), the principle of the least square error is here used. The
function 4y(¢) is divided into two parts, anti-symmetric function 4914(¢) and symmetric
function 4ys(s),

4y1a(t) = {4y(1) — 4y:(—1}/2 }

7
) = {dyi(t) + Ay 1)} /2 (7

for the sake of convenience.
If original #(r) is expressed by (1) without regarding noises or errors in the
observation, those divided parts of 4y.(s) is given by,
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4y1a(t) = a{ f1(p)t/Ts + sin(2rt/pTo)} ] (8)
dyss(r) = b{ fip) + S PY¢/To)? + cos(2at/pTo)) . |

Only one parameter p is included in these expression except the amplitude a or b of
the original periodic term.

For anti-symmetric function 4y4(¢f), amplitude ai(p:) of the spectral component
ay( p1) sin(2wt/p1To) is determined for a given period 71,

Ty =pTo, (9)

so as to make integrated square error,

STT " {4y10(t) — ar(p1) sin(2zt/p1To) }2dt

minimum. Namely,
To/2 . Tos2 N
a(p) = S-TO/2 4Y1a(t) sin(2zt/p1To) dt / S_Tonsmz(Zm/p;To) dt. (10)
Using the minimum integrated square error, spectrum Sio(p1) is defined here by,
Tos2 . To/2
Swa(p) =1 — S_Toﬂ {4110(r) — ar(p1) sin(2zt/p1To)} 2 dt /S_Ton {dya(r)}2dr  (11)

Similarly, amplitude b:(p:) and spectrum Sis(p:) of symmetric function 4y,s(s) are given
by,

To/2 To/2
bip) = Ayrs(t) cos(2rt/ ;1 To) dit cos?(2zt/p1To)dt (12)
-Tg/2 ~Tg/2 .
and,

To/2 . To/2
Si(p) =1- S-To 1 (AY1s(0) — bi(pr) cosQmt/piTo)}* it / S_,o o Ay} e, (13)

respectively. Putting (8) into (10)—(13), ai(p1)/a, bi(p1)/b, Sia(p1) and Sis(p1) are ex-
pressed by functions of p; with a parameter p,

a(p)/a = Z{M(sinl — X cos 1) +—?  sin (i _ E)

T2 4 4 pi—p P DM
— (G )G - sn 3) a9
b(p)/b = 2[{2ﬁ> (p) + —fz(p }sm— - —-—fz(p) (sm; - —p:cos 7)—;)
+ pxp—p (_ _%) p1+p (7; + pn)]/( %’,‘* +s m%) as



9%

o) = { 22 (27  prsin 22 / [%{ﬁ( P+ 25ip)(sin T - Zcos T)

2n
+2r - sin—]
P V4

K. Yanagihara

p

(16)

Sutp = {2822V (2 4 psin 22 [[an (a1 + Zfo)ftr) + 31 o

Fid 2 27 T w2 T 2r
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These are theoretical function when neglecting noises or errors in (r) observation.
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Fig. 5. Spectrum S;.(p;) and amplitude a,(p)) of 4y1a().
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Figs. 5 and 6 show the theoretical curves calculated from (14)—(17) for parameters
p=3/4, 1 and 3/2.
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Fig. 6. Spectrum S:,(p)) and amplitude by(p1) of 4y1.(2).

The spectrum Sia(p1) or Sis(p1) here defined may not give the real spectrum in
usual meaning. But it gives the best fit periodic variation in the interval —T,/2
< t £ To/2 according to the definition. The spectral peak gives the best fit period of
dyra(f) or dyis(r) and the shape of thé spectral curve shows something like spectral
structure. The best fit period of 4yia(r) or 4yis(r) does not change so much even if
the original period T(=pT,) changes very much, as it is seen in Fig. 5 or 6. It depends
rather upon the observation period 7o,. This is a quite similar result as that of

apparent period Ta.
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If some other functions are used for 4y1a(f) or 4yis(t), their spectrum can be
calculated similarly. When the coefficient of an approximate function of the non-
periodic term is §8's for [B:](i =0, 1 and 2), fo(p), fi(p) and fe(p) should be replaced
by (Bo—po')/b, (B1—p1')To/a and (Bz— Bo')To?/b, respectively, in (14), (15), (16) and (17).
The best fit period of thus obtained spectral peak is a function of 48 =8/ — B,
which is the error in determination of non-periodical term of the original function
y(1), for a given parameter p(=T/T,). An example of the period variation is shown
in Fig. 2 (broken line) for 4y'1a(r) = — 48t + asin(2xt/To).

Using the theoretical spectrum Sic(p1) or Sis(p1), best fit terms of observed y(¢)
are obtained as follows. From observed values of ¥(¢), [f:]’s are calculated according
to (3). Then observed 4yia(r) and 4yi(r) are obtained by using (2), (6) and (7).
Putting them into (10)—(13), observed spectrum Si(pi) and Sis(p1) are calculated.
Comparing these observed spectrums with theoretical ones, such as those given in
Fig. 5 and 6, best fit parameter p is determined. In this comparison both spectrums
should be normalized because the peak of the observed spectrum may be lowered by
noises in observed values. The determined p gives fi(p), which is put into (8). Then
the least square method gives the best fit value of a or b from observed values of
4y1a(f) or 4yis(t) and calculated values of the right-hand side of (8).

Choice of the best fit parameter p is not so easy, particularly for p >1 (T > Ty),
because the difference between spectral curves is not so much. This difficulty is
unavoidable anyway as it is described in preceding sections.

In actual application, use of anti-symmetric function is convenient to determine
p unless the phase of the periodic variation is close to cosine term, because some
parts of the cosine term are extracted away by the first approximation of B + [B:]72.
Similar effect of [8:1]+ may be found in sine term too, but it must be smaller than
that in cosine term.

Actual examples of application are shown in section 5.

4 Direct determination of periodic and non-periodic terms

Analysis of period in the preceding section has started from 4%:() under the
condition that the first approximation of non-periodic term was made before. And
then the original terms in y(¢) is obtained from the spectrum of 4y.(r). Leadihg
principle in the procedure is the least square error. If so, direct application of the
same principle to the original y(r) may be simpler.

Supposing,

Y2(r) = Bo(p2) + Pa(pe)t + Pa(p2)t? + azp2) sin(2xt/p2To) + bz(pz)cos(Zr;t/pzTo), (18)
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for the best fit expression of observed y(r), coefficients So(p2), Si(p2), 32(p2), azpe), be(pz)
and p. are determined so as to make the integrated square error,
Tos2

[Tt = w2
minimum, where

pr=T2/Ta. 19)
When y(r) is exactly the same as given by (1), Bo(pz) = Bo, Bi(p2) = B, Be(p2) = Be,
axpz) =a, bo(p2) =b and p =p(T2 =T).

It is convenient to divide y:(r) into symmetric and anti-symmetric terms because

of the same reason as is described for #:(r) in the previous section. Here anti-sym-
metric function,

Yza(r) = Bi(pe)t + ax( pe) sin(2zt/paTo) (20)

is considered first. Corresponding observed value of anti-symmetric term is obtained
from,

Ya(r) = {y(1) — y(—n}/2. 2n

From the observed values of y(r), the best fit coefficients of the anti-symmetric
term are calculated by,

To/2 To/2
N(p2) S 0 dr—L(pz)S Y(¢) sin(2xt/peTo)dr
ap) = il —
(Npa))® = Lip)M(p2) -
Torz To/2
N(p2) S . y(0) Sin(Zn‘!/pzTo)dt—M(pz)S y(Otdt
3:(p) = ~Tor? AT
! {N(p2)}? — L(p2)M(p2)
for a given p:, where,
L(pz) = Sf::z/e 2 dr
Tos2
M(p2) = S-Toli sin?(2zt/p2To) dt (23)
N(ps2) = Sﬁ:jz t sin(2t/poT o) dt .

Using the minimum integrated square error of the anti-symmetric term for a given p,

Tos2
S {#a(t) — y2a()} 2t ,

—To/2

spectrum Sz p2) is similarly defined by,
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To/2 Tos2
Sulpd = 1= (et =yt e[ et
— L(p2) {Bi(p2)} * + M{p2) (az(p2)} * + 2N(p2)Bi(pe)as(ps)
To/2 *
Vorors a1

(€2))

Peak of the spectrum determines the best fit périod p2, which then gives the best fit
ax(p2) and Bi(p:2) by (22).

For symmetric function, similar way must give 8o, 82 and p: which is not neces-
sarily equal to the best fit p. obtained from anti-symmetric function. However
accuracy in determining the period may be lower in symmetric function than in anti-
symmetric one unless the phase of the periodic term is close to the cosine term, as it
is described in the previous section. In actual application, p:, so the period, is
determined from anti-symmetric term, and then symmetric term is calculated by the
least square method using the determined po.

All values of the coefficients are rigorously determined by this method in mathe-
matical meaning. However, reliability of the determined period, and then of all the
determined values, is not so different from that in the method described in the
preceding sections, because the spectrum Sx(p2) shows very broad peak as it is shown
in the actual example of the next section (see Fig. 10). And each calculation in this
method needs a lot of figures for each term to detect slight difference in spectral
value and to treat unprocessed values of y(r).

Table 1. List of observatories

; Geomagnetic [ Preceding or ‘
Observatory —— , ' Supplementary - Period
. Latitude | Longitude, E | observatory
San Juan 29.6 3.1 Vieques 1903-
Chambon-la-Foret 50.5 84.4 Val Joyeux 1901-
Misallat 26.9 105.9 [Hdw"‘“ 1903-
Ksara
Vysokaya Dubrava 48.5 140.7 Sverdlovsk 1900-
. Keles
Y -Bazar 32.3 144, -
angi: 44.0 {Dehra Dun 1503
Patrony 40.7 174.7 {Irk“‘Sk 1900~
Zuy
Kakioka 26.0 206.0 - - {Z"K,a'we' 1900—
Lukiapan
Honolulu 21.1 266.5 1902-
Tucson 40.4 312.2 1910-
Fredericksburg 49.6 349.8 Cheltenhum 1901-
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5. Geomagnetic secular variation in recent 65 years

Geomagnetic secular variations -are various in the world, but periodical terms are
not so different from each other. Here their zonal terms are studied for examples of

applicatidn of the method described above. Data are annual mean values¥.(5.( of
geomagnetic field from 1900 to 1965 at 10 observatories which are distributed rather
evenly in the middle latitude zone from 20° to 50° in geomagnetic latitude. Those
are San Juan, Chambon-la-Foret, Misallat, Vysokaya-Dubrava, Yangi-Bazar, Patrony,
Kakioka, Honolulu, Tucson and Fredericksburg (Table 1). The observatory names are
those in 1965 and the preceding observatories are indicated in the table.
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"Fig. 7. Ten observatories’ mean of annual mean rate
of change in three components of geomagnetic field,
H, Z and D. First approximations g, and Z; of non-
periodic term also are shown for & and Z.
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Ten observatories’ mean of annual mean rate of change in three components, #,
Z and D, are calculated (Fig. 7). For periods of no record in an observatory, data
of a near-by observatory, which is indicated in Table 1, are supplementarily used. If
this is impossible, simple interporation is carried out. For the first decade from 1900
to 1910, as some observatories had not been operated yet, means for existing obser-
vatories’ data are calculated. All the supplementary values are corrected to be connected
smoothly to the values before and after the period concerned by using the difference -
obtained when the same procedure is extended before and after.

As H,Z and D of Fig. 7 are ten observatories’ mean, they express the zonal part.
Change of D is small. #F or Z shows superposition of a periodical term upon a non-
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Fig. 8. Residual 4/ and its ‘anti-symmetric term 4Ha
11-year running average also is stiown for 4Ha.




Periodic and Non-Periodic Components 101

periodical variation. # is considered first for ¥(/) in the preceding sections. First

approximation of H,
Hi=—17.04 4+ 1.0117 + 0.01154¢2 (25)

is obtained from observed values shown in Fig. 7. Fig. 8 shows 45 = H — H1 and its
antisymmetric term 4H1(t) = {4H:(r) — 4H:(—1)} /2. Smooth curve of 4[4 is the 11-
yeér running average, which is calculated to determine the apparent period 7T, because
the 11-year variation exists clearly in /. The estimated T, is 48 years. From Fig. 3,
T =60 years (p =0.92) is obtained for Ta/To =48/65 =0.74. Thus the period of the
periodic term of A is approximately estimated at 60 years.

The spectrum Sia(p1) of 4H1a is calculated by (10) and (11) substituting observed
values of 4K s for 4yi.(r). Black dots of Fig. 9 show the calculated Si.(p:) which is

06 07 08 09 P=Ti/To
10 1 1

[=]
@
|

NORMALIZD Sig(P1)
o
<3
|

&
I

05 ~

Fig. 9. Comparison between theoretical spectrum and
observed one. Each spectrum is normalized as its
maximum value is 1.

normalized as its maximum is 1. Curves of the figure are theoretically expected
spectrums which also are normalized from those in Fig. 5. All the dots are near to
the theoretical spectrum of p =1 (T=65), but slightly shifted to p<1. They are far
from that of p=3/4 (T=50). Therefore best fit period T is estimated at about 60
years which is the same as that estimated from the apparent period 7. Uncertainty
of 5 years or so is inevitable in such period determination.

Substituting 7=60 years (p=0.92) for period in (4),

81— [B1] = —0.0243a

is obtained. And then 4z must be
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{—0.0243¢ + sin(2xt/60)} a
which gives
a=164, r/yr

by the least square method from observed values of 4F1,. This a value and [B:]=
1.011 y/yr? determine the value of S,

B1 = [Bi] — 0.0243a = 0.6°3 7/yr".

Best fit period T can be determined also from symmetric term 4H s and values
of coefficient S, B2 and b may be obtained in similar way using this value of 7', which
may differ somehow from the above T value. However, the T value determined from
dH1a is used here to determine these coefficients, because symmetric term is not
suitable to deduce the period 7 as it is described in section 3. Thus determined
values of the coefficients of symmetric term are,

b=9.56y/yr
Bo = —23.65 y/yr
B2 =0.03248 y/yr?.

All the coefficients give the best fit function of 10 observatories’ mean szcular variation,
H = —23.7 +0.613¢ + 0.0325/% + 16.4 sin(27¢/60) + 9.6 cos(2xt/60), v/yr, (26)

where ¢ is expressed in unit of year and ¢ =0 at 1932.5.
Direct method described in section 4 may be better to determine the period.
Substituting observed values of H(r) for ¥(r) in (22), a:(p2) and Si(p:) are calculated.

Then the spectrum of anti-symmetric term, S:(p:z), are obtained according to (24),
where

Ha(t) = {(H()) — H(-0}/2

Saa(pa)

Ta=60yr
09 l
0.8 n T T
05 10 15
Py (= T2/ To)

Fig. 10. Spectrum Sy(ps) of H.
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is used for ys(r). Fig. 10 shows the calculated S:a(p2) of A, which has a very broad
peak. Its mathematical maximum is found at p. =0.92 which gives the best fit values,

]
T = p2To = 60 years

a =axp:) =16.5y/yr
B1 = Bi(pz) = 0612 7/yr%.
These values coincide with the above values determined by the other methods.
Three methods of determing the period give the same result for /7. Considering
inevitable uncertainty in the determination, simpler way of 7. is convenient. Only
this method is applied for Z. First approximation of Z,

Z1 =14.32 + 0.0282r — 0.03191¢? (X))

¥/yr .
204 AZi

s
3

10

-10 —

-20 -

wyr .
20 - AZja

10 4.

-10

=20 + t=0

1900 10 20 30 40 50 60

Fig. 11. Residual 42, and its anti-symmetric term 4Za.
11-year running average also is shown for 42,
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is obtained from observed values shown in Fig. 7. Fig. 11 shows 42, =2 — Z: and
its anti-symmetric term 4Z,. 11-year running average of 4Zi, is shown too. Interval
between 'zero-points of the 1l-year running average gives T, =47.5 years, which is
slightly smaller than that of 4/ This gives 7 =55 years. Considering that the
difference in 7. is only 0.5 years between H and Z, that old data of Z is not so
reliable and that the period determination includes some uncertainty, the period in Z
is supposed here to be the same as that of f; that is 60 years. Thus the best fit
function of 10 observatories’ mean secular variation for Z is expressed by,

Z = 15.74 — 0.352¢ — 0.0274r2 + 15.6 sin(271/60) — 2.05 cos (21/60), 7/year. (28)
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